Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.592
Filter
1.
Prev Vet Med ; 226: 106190, 2024 May.
Article in English | MEDLINE | ID: mdl-38574490

ABSTRACT

Bovine tuberculosis (bovine TB) is a chronic wasting disease of cattle caused primarily by Mycobacterium bovis. Controlling bovine TB requires highly sensitive, specific, quick, and reliable diagnostic methods. This systematic review and meta-analysis evaluated molecular diagnostic tests for M. bovis detection to inform the selection of the most viable assay. On a per-test basis, loop-mediated isothermal amplification (LAMP) showed the highest overall sensitivity of 99.0% [95% CI: 86.2%-99.9%] and specificity of 99.8% [95% CI: 96.2%-100.00%]. Quantitative real-time polymerase chain reaction (qPCR) outperformed conventional PCR and nested PCR (nPCR) with a diagnostic specificity of 96.6% [95% CI: 88.9%-99.0%], while the diagnostic sensitivity of 70.8% [95% CI: 58.6-80.5%] was comparable to that of nPCR at 71.4% [95% CI: 60.7-80.2%]. Test sensitivity was higher with the input of milk samples (90.9% [95% CI: 56.0%-98.7%]), while specificity improved with tests based on major M. bovis antigens (97.8% [95% CI: 92.3%-99.4%]), the IS6110 insertion sequence (95.4% [95% CI: 87.6%-98.4%]), and the RD4 gene (90.7% [95% CI: 52.2%-98.9%]). The design of the currently available molecular diagnostic assays, while mostly based on nonspecific gene targets, prevents them from being accurate enough to diagnose M. bovis infections in cattle, despite their promise. Future assay development should focus on the RD4 region since it is the only target identified by genome sequence data as being distinctive for detecting M. bovis. The availability of a sufficiently accurate diagnostic test combined with the routine screening of milk samples can decrease the risk of zoonotic transmissions of M. bovis.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Mycobacterium bovis/genetics , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/microbiology , Pathology, Molecular , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods
2.
Sci Rep ; 14(1): 8700, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622191

ABSTRACT

HIV infection has been a global public health threat and overall reported ~ 40 million deaths. Acquired immunodeficiency syndrome (AIDS) is attributed to the retroviruses (HIV-1/2), disseminated through various body fluids. The temporal progression of AIDS is in context to the rate of HIV-1 infection, which is twice as protracted in HIV-2 transmission. Q-PCR is the only available method that requires a well-developed lab infrastructure and trained personnel. Micro-PCR, a portable Q-PCR device, was developed by Bigtec Labs, Bangalore, India. It is simple, accurate, fast, and operationalised in remote places where diagnostic services are inaccessible in developing countries. This novel micro-PCR determines HIV-1 and HIV-2 viral load using a TruePrep™ extractor device for RNA isolation. Five ml blood samples were collected at the blood collection centre at AIIMS, New Delhi, India. Samples were screened for serology, and a comparison of HIV-1/2 RNA was done between qPCR and micro-PCR in the samples. The micro-PCR assay of HIV-RNA has compared well with those from real-time PCR (r = 0.99, i < 0.002). Micro-PCR has good inter and intra-assay reproducibility over a wide dynamic range (1.0 × 102-1.0 × 108 IU/ml). The linear dynamic range was 102-108 IU/ml. The clinical and analytical specificity of the assay was comparable, i.e., 100%. Intra-assay and inter-assay coefficients of variation ranged from 1.17% to 3.15% and from 0.02% to 0.46%, respectively. Moreover, due to the robust, simple, and empirical method, the Probit analysis has also been done for qPCR LODs to avoid uncertainties in target recoveries. The micro-PCR is reliable, accurate, and reproducible for early detection of HIV-1 and HIV-2 viral loads simultaneously. Thus, it can easily be used in the field and in remote places where quantification of both HIV-1/2 is not reachable.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Reproducibility of Results , Sensitivity and Specificity , RNA, Viral/analysis , India , Real-Time Polymerase Chain Reaction/methods , HIV-2/genetics , Viral Load/methods
3.
Emerg Infect Dis ; 30(5): 926-933, 2024 May.
Article in English | MEDLINE | ID: mdl-38579738

ABSTRACT

We investigated clinically suspected measles cases that had discrepant real-time reverse transcription PCR (rRT-PCR) and measles-specific IgM test results to determine diagnoses. We performed rRT-PCR and measles-specific IgM testing on samples from 541 suspected measles cases. Of the 24 IgM-positive and rRT-PCR--negative cases, 20 were among children who received a measles-containing vaccine within the previous 6 months; most had low IgG relative avidity indexes (RAIs). The other 4 cases were among adults who had an unknown previous measles history, unknown vaccination status, and high RAIs. We detected viral nucleic acid for viruses other than measles in 15 (62.5%) of the 24 cases with discrepant rRT-PCR and IgM test results. Measles vaccination, measles history, and contact history should be considered in suspected measles cases with discrepant rRT-PCR and IgM test results. If in doubt, measles IgG avidity and PCR testing for other febrile exanthematous viruses can help confirm or refute the diagnosis.


Subject(s)
Antibodies, Viral , Immunoglobulin M , Measles virus , Measles , Humans , Immunoglobulin M/blood , Measles/diagnosis , Measles/epidemiology , Measles/virology , Measles/immunology , Antibodies, Viral/blood , Japan/epidemiology , Child , Child, Preschool , Measles virus/immunology , Measles virus/genetics , Male , Adult , Female , Infant , Adolescent , Immunoglobulin G/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , Measles Vaccine/immunology , Young Adult , Real-Time Polymerase Chain Reaction/methods
4.
Methods Mol Biol ; 2787: 209-223, 2024.
Article in English | MEDLINE | ID: mdl-38656492

ABSTRACT

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Subject(s)
Basidiomycota , Coffea , Gene Expression Regulation, Plant , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/genetics , Coffea/microbiology , Coffea/genetics , Basidiomycota/genetics , Basidiomycota/pathogenicity , Real-Time Polymerase Chain Reaction/methods , Gene Expression Profiling/methods , Mutation , Plant Leaves/microbiology , Plant Leaves/genetics , Host-Pathogen Interactions/genetics
5.
Virol J ; 21(1): 94, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659036

ABSTRACT

BACKGROUND: The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS: Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS: The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.


Subject(s)
Diarrhea , Feces , Real-Time Polymerase Chain Reaction , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods , Feces/virology , Diarrhea/virology , Diarrhea/diagnosis , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction/methods , Viral Nonstructural Proteins/genetics , Antigens, Viral/genetics , RNA, Viral/genetics , Capsid Proteins/genetics , Genome, Viral/genetics , Gastroenteritis/virology , Gastroenteritis/diagnosis
6.
Sci Rep ; 14(1): 9250, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649415

ABSTRACT

Canine distemper virus (CDV) is a highly contagious virus that affects domestic and wild animals, causing severe illness with high mortality rates. Rapid monitoring and sequencing can provide valuable information about circulating CDV strains, which may foster effective vaccination strategies and the successful integration of these into conservation programs. During two site visits in Bangladesh in 2023, we tested a mobile, deployable genomic surveillance setup to explore the genetic diversity and phylogenetic patterns of locally circulating CDV strains. We collected and analysed 355 oral swab samples from stray dogs in Rajshahi and Chattogram cities, Bangladesh. CDV-specific real-time RT-PCR was performed to screen the samples. Out of the 355 samples, 7.4% (10/135) from Rajshahi city and 0.9% (2/220) from Chattogram city tested positive for CDV. We applied a real-time RT-PCR assay and a pan-genotype CDV-specific amplicon-based Nanopore sequencing technology to obtain the near-completes. Five near-complete genome sequences were generated, with phylogenetic relation to the India-1/Asia-5 lineage previously identified in India. This is the first study to provide genomic data on CDV in Bangladesh and the first demonstration of a mobile laboratory setup as a powerful tool in rapid genomic surveillance and risk assessment for CDV in low resource regions.


Subject(s)
Distemper Virus, Canine , Distemper , Nanopore Sequencing , Phylogeny , Distemper Virus, Canine/genetics , Distemper Virus, Canine/isolation & purification , Distemper Virus, Canine/classification , Bangladesh/epidemiology , Animals , Dogs , Distemper/virology , Distemper/epidemiology , Nanopore Sequencing/methods , Genome, Viral , Real-Time Polymerase Chain Reaction/methods , Genotype , RNA, Viral/genetics
7.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38520154

ABSTRACT

AIMS: Our study evaluates the capacity of direct real-time PCR for detecting Mycobacterium tuberculosis complex (MTBC), with a focus on diagnostic performances and the feasibility of implementing this protocol in an eradication campaign. Specifically, we compare the effectiveness of the direct PCR method to various culture systems used by the Italian National Reference Laboratory over the last decade to detect MTBC. METHODS AND RESULTS: Bovine tissue samples were routinely tested and analyzed for bovine tuberculosis (bTB) confirmation using microbiological culture (solid and liquid media), histopathological analysis, and a direct PCR assay targeting IS6110, an insertion sequence specific to the MTBC that is widely used for tuberculosis diagnosis. The direct real-time PCR demonstrated a high concordance (K = 0.871) with microbiological culture, as well as good sensitivity (91.84%) and specificity (95.24%). In contrast, histopathology demonstrated lower concordance (K = 0.746) and performance levels (sensitivity 91.41%, specificity 82.88%). Liquid media promoted faster and more efficient growth of MTBC than solid media. M. bovis and M. caprae had the comparable ability to respond to the direct real-time PCR test and grow on the microbiological medium. CONCLUSIONS: This study confirms that direct real-time PCR can detect MTBC with high diagnostic accuracy within a few days. This study found no significant differences in performance between culture media and direct PCR for M. bovis and M. caprae.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Tuberculosis , Animals , Cattle , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis, Bovine/diagnosis , Real-Time Polymerase Chain Reaction/methods , Italy , Sensitivity and Specificity
8.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542472

ABSTRACT

In recent years, the field of biology has witnessed a surge of interest in genomics research due to the advancements in biotechnology. Gene expression pattern analysis plays a crucial role in this research, as it enables us to understand the regulatory mechanism of gene expression and the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is an efficient method to analyze the gene expression patterns, for which accuracy relies on the standardized analysis of reference genes. However, numerous studies have shown that no reference gene is universal in all conditions, so screening a suitable reference gene under certain conditions is of great importance. Cinnamomum burmannii (C. burmannii) is rich in volatile components and has high medicinal and economic value. However, knowledge of the screening of reference genes for the gene expression analysis of C. burmannii is insufficient. Aiming at this problem, we evaluated and screened the reference genes in C. burmannii under different experimental conditions, including different abiotic stresses (Cold-treated, PEG-treated and Nacl-treated), different tissues, leaves at different developmental stages and different chemical types. In this study, different algorithms (∆Ct, geNorm, NormFinder and BestKeeper) were used to evaluate the stability of the candidate reference genes, and RefFinder further merged the output data to screen out the optimum reference gene under various experimental conditions in C. burmannii. The results showed that the optimal reference gene number for gene standardization was 2 under different experimental conditions. RPL27|RPS15 was the most suitable combination under the Nacl-treated and PEG-treated samples. RPL27|APT was the optimum combination under the Cold-treated samples. The optimal combinations of other samples were EF1α|ACT7 for different tissues, eIF-5A|Gllα for different borneol clones in C. burmannii, RPS15|ACT7 for leaves at different developmental stages and RPS15|TATA for all samples. Additionally, two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were standardized to verify the feasibility of the selected reference genes under different experimental conditions. This study will be helpful for the subsequent molecular genetic mechanism study of C. burmannii.


Subject(s)
Cinnamomum , Gene Expression Regulation, Plant , Sodium Chloride , Cinnamomum/genetics , Gene Expression Profiling , Real-Time Polymerase Chain Reaction/methods , Reference Standards
9.
Viruses ; 16(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543778

ABSTRACT

Hepatitis E virus (HEV) represents an emerging risk in industrialized countries where the consumption of contaminated food plays a pivotal role. Quantitative real-time RT-PCR (RT-qPCR) is one of the most suitable methods for the detection and quantification of viruses in food. Nevertheless, quantification using RT-qPCR has limitations. Droplet digital PCR (ddPCR) provides the precise quantification of nucleic acids without the need for a standard curve and a reduction in the effect on virus quantification due to the presence of inhibitors. The objectives of the present work were (i) to develop a method for the absolute quantification of HEV in swine tissues based on ddPCR technology and provide internal process control for recovery assessment and (ii) to evaluate the performance of the method by analyzing a selection of naturally contaminated wild boar muscle samples previously tested using RT-qPCR. The method was optimized using a set of in vitro synthesized HEV RNA and quantified dsDNA. The limit of detection of the developed ddPCR assay was 0.34 genome copies/µL. The analysis of the wild boar samples confirmed the validity of the ddPCR assay. The duplex ddPCR method showed no reduction in efficiency compared to individual assays. The method developed in the present study could represent a sensitive assay for the detection and absolute quantification of HEV RNA in food samples with the advantage of presenting the co-amplification of internal process control.


Subject(s)
Hepatitis E virus , Viruses , Animals , Swine , Hepatitis E virus/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Viruses/genetics , Sus scrofa/genetics , Sensitivity and Specificity
10.
Sci Rep ; 14(1): 7331, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538851

ABSTRACT

The selection of stable reference genes for the normalization of reverse transcription quantitative real-time PCR (RT-qPCR) is generally overlooked despite being the crucial element in determining the accuracy of the relative expression of genes. In the present study, the stability of seven candidate reference genes: actin (act), α-tubulin (atub), ß-tubulin (btub), translation elongation factor 1-α (ef1), elongation factor 2 (ef2), ubiquitin-conjugating enzyme (ubc) and 40S ribosomal protein S3A (ws21) in Phytophthora capsici has been validated. The validation was performed at six infection time points during its interaction with its susceptible host Piper nigrum, two developmental stages, and for the combined dataset. Four algorithms: geNorm, NormFinder, BestKeeper, and the ΔCt method were compared, and a comprehensive ranking order was produced using RefFinder. The overall analysis revealed that ef1, ws21, and ubc were identified as the three most stable genes in the combined dataset, ef1, ws21, and act were the most stable at the infection stages, and, ef1, btub, and ubc were most stable during the developmental stages. These findings were further corroborated by validating the P. capsici pathogenesis gene NPP1 expression. The findings are significant as this is the first study addressing the stability of reference genes for P. capsici-P. nigrum interaction studies.


Subject(s)
Phytophthora , Piper nigrum , Real-Time Polymerase Chain Reaction/methods , Phytophthora/genetics , Algorithms , Genes, Plant , Reference Standards , Gene Expression Profiling/methods
11.
Genes (Basel) ; 15(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38540372

ABSTRACT

In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Real-Time Polymerase Chain Reaction/methods , Homozygote , Japan , Sequence Deletion , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics
12.
Genes (Basel) ; 15(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38540377

ABSTRACT

The citrus whitefly, Dialeurodes citri, is a destructive pest that infests citrus plants. It is a major vector in transmitting plant viruses such as citrus yellow vein clearing virus (CYVCV), which has caused severe economic losses worldwide, and therefore efficient control of this pest is economically important. However, the scope of genetic studies primarily focused on D. citri is restricted, something that has potentially limited further study of efficient control options. To explore the functionalities of D. citri target genes, screening for specific reference genes using RT-qPCR under different experimental conditions is essential for the furtherance of biological studies concerning D. citri. The eight candidate reference genes were evaluated by dedicated algorithms (geNorm, Normfinder, BestKeeper and ΔCt method) under five specific experimental conditions (developmental stage, sex, tissue, population and temperature). In addition, the RefFinder software, a comprehensive evaluation platform integrating all of the above algorithms, ranked the expression stability of eight candidate reference genes. The results showed that the best reference genes under different experimental settings were V-ATP-A and RPS18 at different developmental stages; α-tubulin, 18S and V-ATP-A in both sexes; EF1A and α-tubulin in different tissues; Actin and Argk under different populations; and RPS18 and RPL13 in different temperatures. The validation of selected reference genes was further identified using heat shock protein (Hsp) 70 as a reporter gene. Our study, for the first time, provides a detailed compilation of internal reference genes for D. citri that are suitable for RT-qPCR analysis, which is robust groundwork for comprehensive investigation of the functional target genes of D. citri.


Subject(s)
Hemiptera , Female , Animals , Male , Hemiptera/genetics , Tubulin/genetics , Real-Time Polymerase Chain Reaction/methods , Gene Expression , Adenosine Triphosphate
13.
J Microbiol Methods ; 220: 106909, 2024 May.
Article in English | MEDLINE | ID: mdl-38432551

ABSTRACT

Escherichia coli are widely used by water quality managers as Fecal Indicator Bacteria, but current quantification methods do not differentiate them from benign, environmental Escherichia species such as E. marmotae (formerly named cryptic clade V) or E. ruysiae (cryptic clades III and IV). Reliable and specific techniques for their identification are required to avoid confounding microbial water quality assessments. To address this, a multiplex droplet digital PCR (ddPCR) assay targeting lipB (E. coli and E. ruysiae) and bglC (E. marmotae) was designed. The ddPCR performance was assessed using in silico analysis; genomic DNA from 40 local, international, and reference strains of target and non-target coliforms; and spiked water samples in a range relevant to water quality managers (1 to 1000 cells/100 mL). Results were compared to an analogous quantitative PCR (qPCR) and the Colilert method. Both PCR assays showed excellent sensitivity with a limit of detection of 0.05 pg/µL and 0.005 pg/µl for ddPCR and qPCR respectively, and of quantification of 0.5 pg/µL of genomic DNA. The ddPCR allowed differentiation and quantification of three Escherichia species per run by amplitude multiplexing and showed a high concordance with concentrations measured by Colilert once proportional bias was accounted for. In silico specificity testing underlined the possibility to further detect and distinguish Escherichia cryptic clade VI. Finally, the applicability of the ddPCR was successfully tested on environmental water samples where E. marmotae and E. ruysiae potentially confound E. coli counts based on the Most Probable Number method, highlighting the utility of this novel ddPCR as an efficient and rapid discriminatory test to improve water quality assessments.


Subject(s)
Bacteria , Escherichia coli , Real-Time Polymerase Chain Reaction/methods , Water Quality , DNA
14.
PLoS One ; 19(3): e0295287, 2024.
Article in English | MEDLINE | ID: mdl-38489285

ABSTRACT

Leptospirosis is the most widespread zoonosis in the world. The disease is more prevalent in tropical regions where the majority of developing countries are located. Leptospirosis is considered a protean manifestation zoonosis with severity of the disease ranging from a mild febrile illness to a severe and life-threatening illness. Clinical symptoms of leptospirosis overlap with other tropical febrile illnesses. Early, rapid, and definitive diagnosis is important for effective patient management. Since Polymerase Chain Reaction (PCR)-based assays are not readily available in most clinical settings, there is a need for an affordable, simple, and rapid diagnostic test. Quantitative PCR (qPCR) and Recombinase Polymerase Amplification (RPA) were implemented at the Faculty of Medicine, University of Kelaniya, and a prospective study to evaluate RPA for diagnosis of acute phase of leptospirosis was conducted. Results indicate that RPA and qPCR were positive in 81% (98/121) of the total positive and acute clinical samples. Of the 81 positive MAT confirmed patients 60 (74%) and 53 (65%) were positive with qPCR and RPA respectively. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity-70% and specificity-87%) of RPA compared to MAT as the reference gold standard. Results further suggest that there is no significant difference between the two assays, qPCR and RPA-SwiftX (P = 0.40). Laboratory procedures for the extraction and detection by qPCR in the laboratory have been optimized to obtain results within 6 hours. However, the RPA-SwiftX method under field conditions took 35 minutes. The RPA-SwiftX method could replace the qPCR which shows similar sensitivity and specificity. Therefore, RPA established under the current study presents a powerful tool for the early and rapid diagnosis of leptospirosis at point-of-care.


Subject(s)
Leptospira , Leptospirosis , Animals , Humans , Leptospira/genetics , Recombinases , Retrospective Studies , Prospective Studies , Sri Lanka , Leptospirosis/diagnosis , Polymerase Chain Reaction , Nucleotidyltransferases , Zoonoses , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Nucleic Acid Amplification Techniques/methods
15.
J Clin Lab Anal ; 38(5): e24998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444303

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] level variability, related to atherothrombotic risk increase, is mainly attributed to LPA gene, encoding apolipoprotein(a), with kringle IV type 2 (KIV2) copy number variation (CNV) acting as the primary genetic determinant. Genetic characterization of Lp(a) is in continuous growth; nevertheless, the peculiar structural characteristics of this variant constitute a significant challenge to the development of effective detection methods. The aim of the study was to compare quantitative real-time PCR (qPCR) and digital droplet PCR (ddPCR) in the evaluation of KIV2 repeat polymorphism. METHODS: We analysed 100 subjects tested for cardiovascular risk in which Lp(a) plasma levels were assessed. RESULTS: Correlation analysis between CNV values obtained with the two methods was slightly significant (R = 0.413, p = 0.00002), because of the wider data dispersion in qPCR compared with ddPCR. Internal controls C1, C2 and C3 measurements throughout different experimental sessions revealed the superior stability of ddPCR, which was supported by a reduced intra/inter-assay coefficient of variation determined in this method compared to qPCR. A significant inverse correlation between Lp(a) levels and CNV values was confirmed for both techniques, but it was higher when evaluated by ddPCR than qPCR (R = -0.393, p = 0.000053 vs R = -0.220, p = 0.028, respectively). When dividing subjects into two groups according to 500 mg/L Lp(a) cut-off value, a significantly lower number of KIV2 repeats emerged among subjects with greater Lp(a) levels, with stronger evidence in ddPCR than in qPCR (p = 0.000013 and p = 0.001, respectively). CONCLUSIONS: Data obtained support a better performance of ddPCR in the evaluation of KIV2 repeat polymorphism.


Subject(s)
DNA Copy Number Variations , Kringles , Humans , Kringles/genetics , DNA Copy Number Variations/genetics , Lipoprotein(a)/genetics , Polymorphism, Genetic , Real-Time Polymerase Chain Reaction/methods
16.
Sci Rep ; 14(1): 6143, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480844

ABSTRACT

Quantitative real-time polymerase chain reaction (qRT-PCR) has become a commonly used method for the quantification of gene expression. However, accurate qRT-PCR analysis requires a valid internal reference for data normalization. To determine the valid reference characterized with low expression variability among Spodoptera litura samples after microbial pesticide treatments, nine housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), arginine kinase, ubiquitin C, actin-5C (ACT5C), actin, ribosomal protein S13 (RPS13), tubulin, acidic ribosomal protein P0 (RPLP0) and ubiquinol-cytochrome c reductase, were evaluated for their suitability using geNorm, Normfinder, BestKeeper, RefFinder and the comparative delta CT methods in this study. S. litura larvae after direct treatment (larvae were immersed in biopesticides), indirect treatment (larvae were fed with biopesticide immersed artificial diets) and comprehensive treatment (larvae were treated with the first two treatments in sequence), respectively with Metarhizium anisopliae, Empedobacter brevis and Bacillus thuringiensis, were investigated. The results indicated that the best sets of internal references were as follows: RPLP0 and ACT5C for direct treatment conditions; RPLP0 and RPS13 for indirect treatment conditions; RPS13 and GAPDH for comprehensive treatment conditions; RPS13 and RPLP0 for all the samples. These results provide valuable bases for further genetic researches in S. litura.


Subject(s)
Actins , Gene Expression Profiling , Animals , Spodoptera/genetics , Actins/genetics , Real-Time Polymerase Chain Reaction/methods , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Gene Expression
17.
Microb Pathog ; 189: 106600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428469

ABSTRACT

Echinococcus granulosus (Eg) and Echinococcus multilocularis (Em) are the two most widely prevalent types of echinococcosis. Several diagnostic methods have been developed for detecting Eg and Em. However, some limitations, such as being time-consuming, needing expensive instruments, or exhibiting low sensitivity, make these methods unsuitable for on-site detection. In this study, a dual-RPA assay was established to detect and differentiate Eg and Em. The primer concentration ratio, reaction time, and reaction temperature of the dual-RPA were optimized. The result showed that the primer concentration ratio of Eg:Em was 400 nM:400 nM, and the best amplification efficiency was obtained by reacting at 38 °C for 20 min. The sensitivity, specificity, and repeatability of the assay were also tested. The assay's detection limit for both Eg and Em was 10 copies/µL. The assay showed reasonable specificity by testing ten parasitic nucleic acids. The assay's intra- and inter-batch coefficients of variation were below 10%, which indicates robust reproducibility of the assay. Finally, to validate the performance of the dual-RPA assay, it was compared with real-time PCR by using 86 clinical nucleic acid samples. The coincidence rate of Eg between dual-RPA and TaqMan real-time PCR was 96.51%, and the coincidence rate of Em between dual-RPA and TaqMan real-time PCR was 98.84%, indicating its potential for accurate clinical diagnosis. Therefore, this study established a rapid and sensitive dual-RPA assay that can rapidly detect and differentiate Eg and Em in one reaction tube and provided a new assay for the detection of echinococcosis in the field.


Subject(s)
Echinococcosis , Echinococcus granulosus , Animals , Humans , Reproducibility of Results , Sensitivity and Specificity , Echinococcosis/diagnosis , Echinococcus granulosus/genetics , Real-Time Polymerase Chain Reaction/methods , Recombinases , Nucleic Acid Amplification Techniques/methods
18.
J Clin Lab Anal ; 38(7): e25034, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525919

ABSTRACT

BACKGROUND: Accurate quantification of the BCR::ABL1 transcripts is essential for measurable residual disease (MRD) monitoring in chronic myeloid leukemia (CML) after tyrosine kinase inhibitor (TKI) treatment. This study evaluated the newly developed digital real-time PCR method, Dr. PCR, as an alternative reverse transcription-PCR (qRT-PCR) for MRD detection. METHODS: The performance of Dr. PCR was assessed using reference and clinical materials. Precision, linearity, and correlation with qRT-PCR were evaluated. MRD levels detected by Dr. PCR were compared with qRT-PCR, and practical advantages were investigated. RESULTS: Dr. PCR detected MRD up to 0.0032%IS (MR4.5) with excellent precision and linearity and showed a strong correlation with qRT-PCR results. Notably, Dr. PCR identified higher levels of MRD in 12.7% (29/229) of patients than qRT-PCR, including six cases of MR4, which is a critical level for TKI discontinuation. Dr. PCR also allowed for sufficient ABL1 copies in all cases, while qRT-PCR necessitated multiple repeat tests in 3.5% (8/229) of cases. CONCLUSION: Our study provides a body of evidence supporting the clinical application of Dr. PCR as a rapid and efficient method for assessing MRD in patients with CML under the current treatment regimen.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Neoplasm, Residual , Real-Time Polymerase Chain Reaction , Humans , Real-Time Polymerase Chain Reaction/methods , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplasm, Residual/genetics , Reproducibility of Results
19.
Nat Med ; 30(4): 1111-1117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459181

ABSTRACT

Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to neurodevelopmental disabilities. Universal newborn infant screening of cCMV has been increasingly advocated. In the absence of a high-throughput screening test, which can identify all infected newborn infants, the development of an accurate and efficient testing strategy has remained an ongoing challenge. Here we assessed the implementation of pooled saliva polymerase chain reaction (PCR) tests for universal screening of cCMV, in two hospitals of Jerusalem from April 2022 through April 2023. During the 13-month study period, 15,805 infants (93.6% of all live newborn infants) were screened for cCMV using the pooled approach that has since become our routine screening method. The empirical efficiency of the pooling was six (number of tested newborn infants per test), thereby sparing 83% of the saliva tests. Only a minor 3.05 PCR cycle loss of sensitivity was observed for the pooled testing, in accordance with the theoretical prediction for an eight-sample pool. cCMV was identified in 54 newborn infants, with a birth prevalence of 3.4 per 1,000; 55.6% of infants identified with cCMV were asymptomatic at birth and would not have been otherwise targeted for screening. The study demonstrates the wide feasibility and benefits of pooled saliva testing as an efficient, cost-sparing and sensitive approach for universal screening of cCMV.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Infant, Newborn , Infant , Humans , Cytomegalovirus/genetics , Saliva , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/epidemiology , Neonatal Screening/methods , Real-Time Polymerase Chain Reaction/methods
20.
Front Cell Infect Microbiol ; 14: 1349999, 2024.
Article in English | MEDLINE | ID: mdl-38469351

ABSTRACT

Introduction: Bovine tuberculosis (bTB) caused by Mycobacterium tuberculosis complex (MTC) remains a significant concern for public health. Direct real-time PCR and droplet digital PCR (ddPCR) are proposed as alternative tools to enhance diagnostic precision and efficiency. This study aims to assess the diagnostic performance of a ddPCR assay targeting IS6110 for the detection of MTC DNA in both microbiological culture and fresh lymph node (LN) tissue samples obtained from cattle, in comparison with the established reference standard, the microbiological culture followed by real-time PCR. Methods: The fresh LNs (N=100) were collected each from a different cattle carcass at the slaughterhouse. The limit of detection of ddPCR-IS6110 was set to 101 copies per 20 µl reaction. Results: DdPCR-IS6110 detected 44 out of 49 reference-standard positive samples and yielded negative results in 47 out of 51 reference-standard negative samples, resulting in adjusted sensitivity (Se) and specificity (Sp) of 90.76% [95% confidence interval (CI): 82.58 - 98.96%)], and 100% (95% CI: 100%) respectively. The estimated adjusted false negative rate (FNR) was 9.23% (95% CI: 1.04 - 17.42%) and the false positive rate (FPR) was 0% (95% CI: 0%). When directly applied from fresh bovine LN tissues, ddPCR-IS6110 identified 47 out of 49 reference-standard positive samples as ddPCR-IS6110-positive and 42 out of 51 reference-standard negative samples as ddPCR-IS6110-negative, resulting in adjusted Se and Sp values of 94.80% [95% (CI): 88.52 - 100%] and 100% (95% CI: 100%), respectively. The adjusted FNR was 5.20% (95% CI: 0 - 11.50%) and the FPR was 0% (95% CI: 0%). Noteworthy, ddPCR-IS6110 disclosed as positive 9 samples negative to reference-standard. Discussion: DdPCR-IS6110 proved to be a rapid, highly sensitive, and specific diagnostic tool as an alternative to reference-standard method.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Cattle , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Lymph Nodes
SELECTION OF CITATIONS
SEARCH DETAIL
...